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Lock-based Concurrent Data Structures

Before moving beyond locks, we’ll first describe how to use locks
in some common data structures. Adding locks to a data structure to
make it usable by threads makes the structure thread safe. Of course,
exactly how such locks are added determines both the correctness
and performance of the data structure. And thus, our challenge:

CRUX: HOW TO ADD LOCKS TO DATA STRUCTURES

When given a particular data structure, how should we add locks
to it, in order to make it work correctly? Further, how do we add
locks such that the data structure yields high performance, enabling
many threads to access the structure at once, i.e., concurrently?

Of course, we will be hard pressed to cover all data structures or
all methods for adding concurrency, as this is a topic that has been
studied for years, with (literally) thousands of research papers pub-
lished about it. Thus, we hope to provide a sufficient introduction
to the type of thinking required, and refer you to some good sources
of material for further inquiry on your own. We found Moir and
Shavit’s survey to be a great source of information [MS04].

28.1 Concurrent Counters

One of the simplest data structures is a counter. It is a structure
that is commonly used and has a simple interface. We define a simple
non-concurrent counter in Figure 28.1.
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typedef struct __counter_t {

int value;

} counter_t;

void init(counter_t *c) {

c->value = 0;

}

void increment(counter_t *c) {

c->value++;

}

void decrement(counter_t *c) {

c->value--;

}

int get(counter_t *c) {

return c->value;

}

Figure 28.1: A Counter Without Locks

Simple But Not Scalable

As you can see, the non-synchronized counter is a trivial data struc-
ture, requiring a tiny amount of code to implement. We now have
our next challenge: how can we make this code thread safe? Figure
28.2 shows how we do so.

This concurrent counter is simple and works correctly. In fact,
it follows a design pattern common to the simplest and most basic
concurrent data structures: it simply adds a single lock, which is ac-
quired when calling a routine that manipulates the data structure,
and is released when returning from the call. In this manner, it is
similar to a data structure built with monitors [BH73], where locks
are acquired and released automatically as you call and return from
object methods.

At this point, you have a working concurrent data structure. The
problem you might have is performance. If your data structure is
too slow, you’ll have to do more than just add a single lock; such
optimizations, if needed, are thus the topic of the rest of the chapter.
Note that if the data structure is not too slow, you are done! No need
to do something fancy if something simple will work.

To understand the performance costs of the simple approach, we
run a benchmark in which each thread updates a single shared counter
a fixed number of times; we then vary the number of threads. Figure
28.3 shows the total time taken, with one to four threads active; each
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typedef struct __counter_t {

int value;

pthread_lock_t lock;

} counter_t;

void init(counter_t *c) {

c->value = 0;

Pthread_mutex_init(&c->lock, NULL);

}

void increment(counter_t *c) {

Pthread_mutex_lock(&c->lock);

c->value++;

Pthread_mutex_unlock(&c->lock);

}

void decrement(counter_t *c) {

Pthread_mutex_lock(&c->lock);

c->value--;

Pthread_mutex_unlock(&c->lock);

}

int get(counter_t *c) {

Pthread_mutex_lock(&c->lock);

int rc = c->value;

Pthread_mutex_unlock(&c->lock);

return rc;

}

Figure 28.2: A Counter With Locks

thread updates the counter one million times. This experiment was
run upon an iMac with four Intel 2.7 GHz i5 CPUs; with more CPUs
active, we hope to get more total work done per unit time.

From the top line in the figure (labeled precise), you can see that
the performance of the synchronized counter scales poorly. Whereas
a single thread can complete the million counter updates in a tiny
amount of time (roughly 0.03 seconds), having two threads each up-
date the counter one million times concurrently leads to a massive
slowdown (taking over 5 seconds!). It only gets worse with more
threads.

Ideally, you’d like to see the threads complete just as quickly on
multiple processors as the single thread does on one. Achieving this
end is called perfect scaling; even though more work is done, it is
done in parallel, and hence the time taken to complete the task is not
increased.
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Figure 28.3: Performance of Traditional vs. Sloppy Counters

Scalable Counting

Amazingly, researchers have studied how to build more scalable coun-
ters for years [MS04]. Even more amazing is the fact that scalable
counters matter, as recent work in operating system performance
analysis has shown [B+10]; without scalable counting, some work-
loads running on Linux suffer from serious scalability problems on
multicore machines.

Though many techniques have been developed to attack this prob-
lem, we’ll now describe one particular approach. The idea, intro-
duced in recent research [B+10], is known as a sloppy counter.

The sloppy counter works by representing a single logical counter
via numerous local physical counters, one per CPU core, as well as
a single global counter. Specifically, on a machine with four CPUs,
there are four local counters and one global one. In addition to these
counters, there are also locks, one for each of the local counters, and
one for the global counter.

The basic idea of sloppy counting is as follows. When a thread
running on a given core wishes to increment the counter, it incre-
ments its local counter; access to this local counter is synchronized
via the corresponding local lock. Because each CPU has its own lo-
cal counter, threads across CPUs can update local counters without
contention, and thus counter updates are scalable.

However, to keep the global counter up to date (in case a thread
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Time L1 L2 L3 L4 G

0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5→ 0 1 3 4 5 (from L1)
7 0 2 4 5→ 0 10 (from L4)

Table 28.1: Tracing the Sloppy Counters

wishes to read its value), the local values are periodically transferred
to the global counter, by acquiring the global lock and incrementing
it by the local counter’s value; the local counter is then reset to zero.

How often this local-to-global transfer occurs is determined by a
threshold, which we call S here (for sloppiness). The smaller S is,
the more the counter behaves like the non-scalable counter above;
the bigger S is, the more scalable the counter, but the further off the
global value might be from the actual count. One could simply ac-
quire all the local locks and the global lock (in a specified order, to
avoid deadlock) to get an exact value, but that is not scalable.

To make this clear, let’s look at an example (Table 28.1). In this
example, the threshold S is set to 5, and there are threads on each of
four CPUs updating their local counters L1 ... L4. The global counter
value (G) is also shown in the trace, with time increasing downward.
At each time step, a local counter may be incremented; if the local
value reaches the threshold S, the local value is transferred to the
global counter and the local counter is reset.

The lower line in Figure 28.3 (labeled sloppy) shows the perfor-
mance of sloppy counters with a threshold S of 1024. Performance is
excellent; the time taken to update the counter four million times on
four processors is hardly higher than the time taken to update it one
million times on one processor.

Figure 28.5 shows the importance of the threshold value S, with
four threads each incrementing the counter 1 million times on four
CPUs. If S is low, performance is poor (but the global count is al-
ways quite accurate); if S is high, performance is excellent, but the
global count lags (by the number of CPUs multiplied by S). This
accuracy/performance trade-off is what sloppy counters enables.

A rough version of such a sloppy counter is found in Figure 28.4.
Read it, or better yet, run it yourself in some experiments to better
understand how it works.
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typedef struct __counter_t {

int global; // global count

pthread_mutex_t glock; // global lock

int local[NUMCPUS]; // local count (per cpu)

pthread_mutex_t llock[NUMCPUS]; // ... and locks

int threshold; // update frequency

} counter_t;

// init: record threshold, init locks, init values

// of all local counts and global count

void init(counter_t *c, int threshold) {

c->threshold = threshold;

c->global = 0;

pthread_mutex_init(&c->glock, NULL);

int i;

for (i = 0; i < NUMCPUS; i++) {

c->local[i] = 0;

pthread_mutex_init(&c->llock[i], NULL);

}

}

// update: usually, just grab local lock and update local amount

// once local count has risen by ’threshold’, grab global

// lock and transfer local values to it

void update(counter_t *c, int threadID, int amt) {

pthread_mutex_lock(&c->llock[threadID]);

c->local[threadID] += amt; // assumes amt > 0

if (c->local[threadID] >= c->threshold) { // transfer to global

pthread_mutex_lock(&c->glock);

c->global += c->local[threadID];

pthread_mutex_unlock(&c->glock);

c->local[threadID] = 0;

}

pthread_mutex_unlock(&c->llock[threadID]);

}

// get: just return global amount (which may not be perfect)

int get(counter_t *c) {

pthread_mutex_lock(&c->glock);

int val = c->global;

pthread_mutex_unlock(&c->glock);

return val; // only approximate!

}

Figure 28.4: Sloppy Counter Implementation
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Figure 28.5: Scaling Sloppy Counters

28.2 Concurrent Linked Lists

We next examine a more complicated structure, the linked list.
Let’s start with a basic approach once again. For simplicity, we’ll
omit some of the obvious routines that such a list would have and
just focus on concurrent insert; we’ll leave it to the reader to think
about lookup, delete, and so forth. Figure 28.6 shows the code for
this rudimentary data structure.

As you can see in the code, the code simply acquires a lock in the
insert routine upon entry, and releases it upon exit. One small tricky
issue arises if malloc() happens to fail (a rare case); in this case, the
code must also release the lock before failing the insert.

This kind of exceptional control flow has been shown to be quite
error prone; a recent study of Linux kernel patches found that a huge
fraction of bugs (nearly 40%) are found on such rarely-taken code
paths (indeed, this observation sparked some of our own research,
in which we removed all memory-failing paths from a Linux file sys-
tem, resulting in a more robust system [S+11]).

Thus, a challenge: can we rewrite the insert and lookup routines
to remain correct under concurrent insert but avoid the case where
the failure path also requires us to add the call to unlock?
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// basic node structure

typedef struct __node_t {

int key;

struct __node_t *next;

} node_t;

// basic list structure (one used per list)

typedef struct __list_t {

node_t *head;

pthread_mutex_t lock;

} list_t;

void List_Init(list_t *L) {

L->head = NULL;

pthread_mutex_init(&L->lock, NULL);

}

int List_Insert(list_t *L, int key) {

pthread_mutex_lock(&L->lock);

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

pthread_mutex_unlock(&L->lock);

return -1; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

return 0; // success

}

int List_Lookup(list_t *L, int key) {

pthread_mutex_lock(&L->lock);

node_t *curr = L->head;

while (curr) {

if (curr->key == key) {

pthread_mutex_unlock(&L->lock);

return 0; // success

}

curr = curr->next;

}

pthread_mutex_unlock(&L->lock);

return -1; // failure

}

Figure 28.6: Concurrent Linked List
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TIP: BE WARY OF LOCKS AND CONTROL FLOW

A general design tip, which is useful in concurrent code as well as
elsewhere, is to be wary of control flow changes that lead to function
returns, exits, or other similar error conditions that halt the execution
of a function. Because many functions will begin by acquiring a lock,
allocating some memory, or doing other similar stateful operations,
when errors arise, the code has to undo all of the state before return-
ing; as it turns out, this is error-prone. Thus, it is best to structure
code so as to minimize this pattern.

The answer, in this case, is yes. Specifically, we can rearrange the
code a bit so that the lock and release only surround the actual critical
section in the insert code, and that a common exit path is used in the
lookup code. The former works because part of the lookup actually
need not be locked; assuming that malloc() itself is thread-safe,
each thread can call into it without worry of race conditions or other
concurrency bugs. Only when updating the shared list does a lock
need to be held. See Figure 28.7 for the details.

As for the lookup routine, it is a simple code transformation to
jump out of the main search loop to a single return path. Doing so
again reduces the number of lock acquire/release points in the code,
and thus decreases the chances of accidentally introducing bugs (such
as forgetting to unlock before returning) into the code.

Scaling Linked Lists

Though we again have a basic concurrent linked list, once again we
are in a situation where it does not scale particularly well. One tech-
nique that researchers have explored to enable more concurrency
within a list is something called hand-over-hand locking (also known
as lock coupling) [MS04].

The idea is pretty simple. Instead of having a single lock for the
entire list, you instead add a lock per node of the list. When travers-
ing the list, the code first grabs the next node’s lock and then releases
the current node’s lock (which inspires the name hand-over-hand).
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void List_Init(list_t *L) {

L->head = NULL;

pthread_mutex_init(&L->lock, NULL);

}

void List_Insert(list_t *L, int key) {

// synchronization not needed

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return;

}

new->key = key;

// just lock critical section

pthread_mutex_lock(&L->lock);

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

}

int List_Lookup(list_t *L, int key) {

int rv = -1;

pthread_mutex_lock(&L->lock);

node_t *curr = L->head;

while (curr) {

if (curr->key == key) {

rv = 0;

break;

}

curr = curr->next;

}

pthread_mutex_unlock(&L->lock);

return rv; // now both success and failure

}

Figure 28.7: Concurrent Linked List: Rewritten

Conceptually, a hand-over-hand linked list makes some sense; it
enables a high degree of concurrency in list operations. However,
in practice, it is hard to make such a structure faster than the sim-
ple single lock approach, as the overheads of acquiring and releasing
locks for each node of a list traversal is prohibitive. Even with very
large lists, and a large number of threads, the concurrency enabled
by allowing multiple on-going traversals is unlikely to be faster than
simply grabbing a single lock, performing an operation, and releas-
ing it. Perhaps some kind of hybrid (where you grab a new lock
every so many nodes) would be worth investigating.
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TIP: MORE CONCURRENCY ISN’T NECESSARILY FASTER

If the scheme you design adds a lot of overhead (for example, by ac-
quiring and releasing locks frequently, instead of once), the fact that
it is more concurrent may not be important. Simple schemes tend to
work well, especially if they use costly routines rarely. Adding more
locks and complexity can be your downfall. All of that said, there is
one way to really know: build both alternatives (simple but less con-
current, and complex but more concurrent) and measure how they
do. In the end, you can’t cheat on performance; your idea is either
faster, or it isn’t.

28.3 Concurrent Queues

As you know by now, there is always a standard method to make
a concurrent data structure: add a big lock. For a queue, we’ll skip
that approach, assuming you can figure it out.

Instead, we’ll take a look at a slightly more concurrent queue de-
signed by Michael and Scott [MS98]. The data structures and code
used for this queue are found in Figure 28.8 on the following page.

If you study this code carefully, you’ll notice that there are two
locks, one for the head of the queue, and one for the tail. The goal
of these two locks is to enable concurrency of enqueue and dequeue
operations. In the common case, enqueue will only access the tail
lock, and dequeue the head lock.

One trick used by the Michael and Scott is to add a dummy node
(allocated in the queue initialization code); this dummy enables the
separation of head and tail operations. Study the code, or better yet,
type it in and run and measure it, to understand it fully.

Queues are commonly used in multi-threaded applications. How-
ever, the type of queue used here (with just locks) often does not
completely meet the needs of such programs. A more fully devel-
oped bounded queue, that enables a thread to wait if the queue is
either empty or overly full, is the subject of our intense study in the
next chapter on condition variables.
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typedef struct __node_t {

int value;

struct __node_t *next;

} node_t;

typedef struct __queue_t {

node_t *head;

node_t *tail;

pthread_mutex_t headLock;

pthread_mutex_t tailLock;

} queue_t;

void Queue_Init(queue_t *q) {

node_t *tmp = malloc(sizeof(node_t));

tmp->next = NULL;

q->head = q->tail = tmp;

pthread_mutex_init(&q->headLock, NULL);

pthread_mutex_init(&q->tailLock, NULL);

}

void Queue_Enqueue(queue_t *q, int value) {

node_t *tmp = malloc(sizeof(node_t));

assert(tmp != NULL);

tmp->value = value;

tmp->next = NULL;

pthread_mutex_lock(&q->tailLock);

q->tail->next = tmp;

q->tail = tmp;

pthread_mutex_unlock(&q->tailLock);

}

int Queue_Dequeue(queue_t *q, int *value) {

pthread_mutex_lock(&q->headLock);

node_t *tmp = q->head;

node_t *newHead = tmp->next;

if (newHead == NULL) {

pthread_mutex_unlock(&q->headLock);

return -1; // queue was empty

}

*value = newHead->value;

q->head = newHead;

pthread_mutex_unlock(&q->headLock);

free(tmp);

return 0;

}

Figure 28.8: Michael and Scott Concurrent Queue
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28.4 Concurrent Hash Table

We end our discussion with a simple and widely applicable con-
current data structure, the hash table. We’ll focus on a simple hash
table that does not resize; a little more work is required to handle
resizing, which we leave as an exercise for the reader (sorry!).
#define BUCKETS (101)

typedef struct __hash_t {

list_t lists[BUCKETS];

} hash_t;

void Hash_Init(hash_t *H) {

int i;

for (i = 0; i < BUCKETS; i++) {

List_Init(&H->lists[i]);

}

}

int Hash_Insert(hash_t *H, int key) {

int bucket = key % BUCKETS;

return List_Insert(&H->lists[bucket], key);

}

int Hash_Lookup(hash_t *H, int key) {

int bucket = key % BUCKETS;

return List_Lookup(&H->lists[bucket], key);

}

Figure 28.9: A Concurrent Hash Table

This concurrent hash table is straightforward, is built using the
concurrent lists we developed earlier, and works incredibly well. The
reason for its good performance is that instead of having a single
lock for the entire structure, it uses a lock per hash bucket (each of
which is represented by a list). Doing so enables many concurrent
operations to take place.

Figure 28.10 shows the performance of the hash table under con-
current updates (from 10,000 to 50,000 concurrent updates from each
of four threads, on the same iMac with four CPUs). Also shown, for
the sake of comparison, is the performance of a linked list (with a
single lock). As you can see from the graph, this simple concurrent
hash table scales magnificently; the linked list, in contrast, does not.
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Figure 28.10: Scaling Hash Tables

28.5 Summary

We have introduced a sampling of concurrent data structures, from
counters, to lists and queues, and finally to the ubiquitous and heavily-
used hash table. We have learned a few important lessons along the
way: to be careful with acquisition and release of locks around con-
trol flow changes; that enabling more concurrency does not necessar-
ily increase performance; that performance problems should only be
remedied once they exist. This last point, of avoiding premature op-
timization, is central to any performance-minded developer; there is
no value in making something faster if doing so will not improve the
overall performance of the application.

Of course, we have just scratched the surface of high performance
structures. See Moir and Shavit’s excellent survey for more informa-
tion, as well as links to other sources [MS04]. In particular, you might
be interested in other structures (such as B-trees); for this knowledge,
a database class is your best bet. You also might be interested in
techniques that don’t use traditional locks at all; such non-blocking
data structures are something we’ll get a taste of in the chapter on
common concurrency bugs, but frankly this topic is an entire area
of knowledge requiring more study than is possible in this humble
book. Find out more on your own if you are interested (as always!).
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TIP: AVOID PREMATURE OPTIMIZATION

When building a concurrent data structure, start with the most basic
approach, which is to add a single big lock to provide synchronized
access. By doing so, you are likely to build a correct lock; if you then
find that it suffers from performance problems, you can refine it, thus
only making it fast if need be. As Knuth famously stated, “Prema-
ture optimization is the root of all evil.”
Many operating systems added a single lock when transitioning to
multiprocessors, including Sun OS and Linux. In the latter, it even
had a name, the big kernel lock (BKL), and was the source of per-
formance problems for many years until it was finally removed in
2011. In SunOS (which was a BSD variant), the notion of removing
the single lock protecting the kernel was so painful that the Sun engi-
neers decided on a different route: building the entirely new Solaris
operating system, which was multi-threaded from day one. Read the
Linux and Solaris kernel books for more information [BC05, MM00].
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